|
MayaFlux 0.1.0
Digital-First Multimedia Processing Framework
|
Namespaces | |
| namespace | PipelineFactory |
| Factory functions for common pipeline configurations. | |
Classes | |
| struct | AutoRegisterOperation |
| Automatic registration helper Operations can use this in their implementation files for auto-registration. More... | |
| struct | ChannelEnergy |
| struct | ChannelStatistics |
| Statistical results for a single data channel. More... | |
| class | ComputationGrammar |
| Core grammar system for rule-based computation in Maya Flux. More... | |
| class | ComputationPipeline |
| Pipeline that uses grammar rules for operation composition. More... | |
| class | ComputeMatrix |
| Local execution orchestrator for computational operations. More... | |
| class | ComputeOperation |
| Base interface for all computational operations in the processing pipeline. More... | |
| class | ConvolutionTransformer |
| Concrete transformer for convolution-based operations. More... | |
| struct | DataStructureInfo |
| Metadata about data structure for reconstruction. More... | |
| struct | EnergyAnalysis |
| Analysis result structure for energy analysis. More... | |
| class | EnergyAnalyzer |
| High-performance energy analyzer with zero-copy processing. More... | |
| struct | ExecutionContext |
| Context information for operation execution. More... | |
| struct | extraction_traits_d |
| Traits to determine how to extract data from various types. More... | |
| struct | extraction_traits_d< Eigen::MatrixXd > |
| Specialization of extraction_traits_d for Eigen::MatrixXd. More... | |
| struct | extraction_traits_d< Kakshya::DataVariant > |
| Specialization of extraction_traits_d for single Kakshya::DataVariant. More... | |
| struct | extraction_traits_d< Kakshya::Region > |
| Specialization of extraction_traits_d for Kakshya::Region. More... | |
| struct | extraction_traits_d< Kakshya::RegionGroup > |
| Specialization of extraction_traits_d for Kakshya::RegionGroup. More... | |
| struct | extraction_traits_d< std::shared_ptr< Kakshya::SignalSourceContainer > > |
| Specialization of extraction_traits_d for shared_ptr to Kakshya::SignalSourceContainer. More... | |
| struct | extraction_traits_d< std::vector< Kakshya::DataVariant > > |
| Specialization of extraction_traits_d for vector of Kakshya::DataVariant. More... | |
| struct | extraction_traits_d< std::vector< Kakshya::RegionSegment > > |
| Specialization of extraction_traits_d for vector of Kakshya::RegionSegment. More... | |
| struct | extraction_traits_d< T > |
| Specialization of extraction_traits_d for Eigen matrices with double scalar type. More... | |
| class | FeatureExtractor |
| Analyzer-guided feature extractor with enum-based configuration. More... | |
| class | FluentExecutor |
| Fluent interface for chaining operations on any executor. More... | |
| class | GrammarAwareComputeMatrix |
| ComputeMatrix extension that integrates grammar-based operation selection. More... | |
| struct | IO |
| Input/Output container for computation pipeline data flow with structure preservation. More... | |
| struct | is_eigen_matrix |
| struct | is_eigen_matrix< Eigen::Matrix< Scalar, Rows, Cols, Options, MaxRows, MaxCols > > |
| struct | is_IO |
| Helper to detect if a type is an IO. More... | |
| struct | is_IO< IO< T > > |
| Specialization for IO types. More... | |
| class | MathematicalTransformer |
| Concrete transformer for mathematical operations. More... | |
| class | OperationHelper |
| Universal data conversion helper for all Yantra operations. More... | |
| class | OperationPool |
| Thread-safe pool for managing named operation instances. More... | |
| class | OperationRegistry |
| Manages operation type registration, discovery, and factory creation. More... | |
| class | OpUnit |
| Abstract base class for operation units in recursive processing graphs. More... | |
| struct | PooledOperationInfo |
| Metadata about a pooled operation. More... | |
| struct | SortKey |
| Multi-dimensional sort key specification for complex sorting. More... | |
| class | SpectralTransformer |
| Concrete transformer for frequency-domain operations. More... | |
| class | StandardSorter |
| Concrete implementation for standard comparison-based sorting. More... | |
| struct | StatisticalAnalysis |
| Analysis result structure for statistical analysis. More... | |
| class | StatisticalAnalyzer |
| High-performance statistical analyzer with zero-copy processing. More... | |
| class | TemporalTransformer |
| Concrete transformer for time-domain operations. More... | |
| struct | TransformationKey |
| Multi-dimensional transformation key specification for complex transformations. More... | |
| class | UniversalAnalyzer |
| Template-flexible analyzer base with instance-defined I/O types. More... | |
| class | UniversalExtractor |
| Template-flexible extractor base with instance-defined I/O types. More... | |
| class | UniversalMatcher |
| Type-agnostic pattern matching for computation rules. More... | |
| class | UniversalSorter |
| Template-flexible sorter base with instance-defined I/O types. More... | |
| class | UniversalTransformer |
| Template-flexible transformer base with instance-defined I/O types. More... | |
Concepts | |
| concept | OperationReadyData |
| Concept to constrain types suitable for operation units. | |
| concept | VariantVector |
| concept | ComputeData |
| Universal concept for types that can be used as data in compute operations. | |
| concept | RegionLike |
| concept | MultiVariant |
| concept | RequiresContainer |
| concept | SingleVariant |
| A SingleVariant is either a single DataVariant, an Eigen vector type, or any type constructible from DataVariant but not a vector of DataVariants, not a shared_ptr to SignalSourceContainer, and not RegionLike. | |
| concept | EigenMatrixLike |
| Concept for Eigen matrix types with double scalar. | |
| concept | ExecutorConcept |
| Defines requirements for executor types that can be used with FluentExecutor. | |
Typedefs | |
| using | StandardEnergyAnalyzer = EnergyAnalyzer< std::vector< Kakshya::DataVariant >, Eigen::MatrixXd > |
| Standard energy analyzer: DataVariant -> MatrixXd. | |
| using | ContainerEnergyAnalyzer = EnergyAnalyzer< std::shared_ptr< Kakshya::SignalSourceContainer >, Eigen::MatrixXd > |
| Container energy analyzer: SignalContainer -> MatrixXd. | |
| using | RegionEnergyAnalyzer = EnergyAnalyzer< Kakshya::Region, Eigen::MatrixXd > |
| Region energy analyzer: Region -> MatrixXd. | |
| template<ComputeData InputType = std::vector<Kakshya::DataVariant>> | |
| using | RawEnergyAnalyzer = EnergyAnalyzer< InputType, std::vector< std::vector< double > > > |
| Raw energy analyzer: produces double vectors. | |
| template<ComputeData InputType = std::vector<Kakshya::DataVariant>> | |
| using | VariantEnergyAnalyzer = EnergyAnalyzer< InputType, std::vector< Kakshya::DataVariant > > |
| Variant energy analyzer: produces DataVariant output. | |
| using | StandardStatisticalAnalyzer = StatisticalAnalyzer< std::vector< Kakshya::DataVariant >, Eigen::MatrixXd > |
| Standard statistical analyzer: DataVariant -> MatrixXd. | |
| using | ContainerStatisticalAnalyzer = StatisticalAnalyzer< std::shared_ptr< Kakshya::SignalSourceContainer >, Eigen::MatrixXd > |
| Container statistical analyzer: SignalContainer -> MatrixXd. | |
| using | RegionStatisticalAnalyzer = StatisticalAnalyzer< Kakshya::Region, Eigen::VectorXd > |
| Region statistical analyzer: Region -> MatrixXd. | |
| template<ComputeData InputType = std::vector<Kakshya::DataVariant>> | |
| using | RawStatisticalAnalyzer = StatisticalAnalyzer< InputType, std::vector< std::vector< double > > > |
| Raw statistical analyzer: produces double vectors. | |
| template<ComputeData InputType = std::vector<Kakshya::DataVariant>> | |
| using | VariantStatisticalAnalyzer = StatisticalAnalyzer< InputType, Kakshya::DataVariant > |
| Variant statistical analyzer: produces DataVariant output. | |
| template<ComputeData OutputType = std::vector<Kakshya::DataVariant>> | |
| using | DataAnalyzer = UniversalAnalyzer< std::vector< Kakshya::DataVariant >, OutputType > |
| Analyzer that takes DataVariant and produces DataVariant. | |
| template<ComputeData OutputType = std::shared_ptr<Kakshya::SignalSourceContainer>> | |
| using | ContainerAnalyzer = UniversalAnalyzer< std::shared_ptr< Kakshya::SignalSourceContainer >, OutputType > |
| Analyzer for signal container processing. | |
| template<ComputeData OutputType = Kakshya::Region> | |
| using | RegionAnalyzer = UniversalAnalyzer< Kakshya::Region, OutputType > |
| Analyzer for region-based analysis. | |
| template<ComputeData OutputType = Kakshya::RegionGroup> | |
| using | RegionGroupAnalyzer = UniversalAnalyzer< Kakshya::RegionGroup, OutputType > |
| Analyzer for region group processing. | |
| template<ComputeData OutputType = std::vector<Kakshya::RegionSegment>> | |
| using | SegmentAnalyzer = UniversalAnalyzer< std::vector< Kakshya::RegionSegment >, OutputType > |
| Analyzer for segment processing. | |
| template<ComputeData InputType = std::vector<Kakshya::DataVariant>> | |
| using | MatrixAnalyzer = UniversalAnalyzer< InputType, Eigen::MatrixXd > |
| Analyzer that produces Eigen matrices. | |
| template<ComputeData InputType = std::vector<Kakshya::DataVariant>> | |
| using | VectorAnalyzer = UniversalAnalyzer< InputType, Eigen::VectorXd > |
| Analyzer that produces Eigen vectors. | |
| using | DataOperation = ComputeOperation< Kakshya::DataVariant > |
| using | ContainerOperation = ComputeOperation< std::shared_ptr< Kakshya::SignalSourceContainer > > |
| using | RegionOperation = ComputeOperation< Kakshya::Region > |
| using | RegionGroupOperation = ComputeOperation< Kakshya::RegionGroup > |
| using | SegmentOperation = ComputeOperation< std::vector< Kakshya::RegionSegment > > |
| using | DataIO = IO< std::vector< Kakshya::DataVariant > > |
| IO for universal data variant. | |
| using | ContainerIO = IO< std::shared_ptr< Kakshya::SignalSourceContainer > > |
| IO for signal containers. | |
| using | RegionIO = IO< Kakshya::Region > |
| IO for single regions. | |
| using | RegionGroupIO = IO< Kakshya::RegionGroup > |
| IO for region groups. | |
| using | SegmentIO = IO< std::vector< Kakshya::RegionSegment > > |
| IO for region segments. | |
| template<typename T > | |
| using | enable_if_single_variant_t = std::enable_if_t< SingleVariant< T > > |
| template<typename T > | |
| using | enable_if_multi_variant_t = std::enable_if_t< extraction_traits_d< T >::is_multi_variant > |
| template<typename T > | |
| using | enable_if_region_like_t = std::enable_if_t< extraction_traits_d< T >::is_region_like > |
| template<typename T > | |
| using | enable_if_multi_no_container_t = std::enable_if_t< extraction_traits_d< T >::is_multi_variant &&!extraction_traits_d< T >::requires_container > |
| template<typename T > | |
| using | enable_if_multi_with_container_t = std::enable_if_t< extraction_traits_d< T >::is_multi_variant &&extraction_traits_d< T >::requires_container > |
| template<typename T > | |
| using | enable_if_eigen_matrix_t = std::enable_if_t< is_eigen_matrix_v< T > &&std::is_same_v< typename T::Scalar, double > > |
| template<typename T > | |
| using | extraction_result_t = typename extraction_traits_d< T >::result_type |
| template<typename T > | |
| using | variant_result_t = typename extraction_traits_d< T >::variant_result_type |
| using | StandardFeatureExtractor = FeatureExtractor< std::vector< Kakshya::DataVariant >, std::vector< std::vector< double > > > |
| Standard feature extractor: vector of [DataVariant -> vector<double>]. | |
| using | MatrixFeatureExtractor = FeatureExtractor< std::vector< Kakshya::DataVariant >, Eigen::MatrixXd > |
| Eigen Matrix feature extractor: DataVariant -> Matrixxd. | |
| using | ContainerFeatureExtractor = FeatureExtractor< std::shared_ptr< Kakshya::SignalSourceContainer >, std::vector< std::vector< double > > > |
| Container feature extractor: SignalContainer -> multi vector<double> | |
| using | RegionFeatureExtractor = FeatureExtractor< Kakshya::Region, std::vector< std::vector< double > > > |
| Region feature extractor: Region -> multi vector<double> | |
| using | VariantFeatureExtractor = FeatureExtractor< std::vector< Kakshya::DataVariant >, std::vector< Kakshya::DataVariant > > |
| Variant feature extractor: DataVariant -> DataVariant. | |
| template<ComputeData OutputType = Kakshya::DataVariant> | |
| using | DataExtractor = UniversalExtractor< std::vector< Kakshya::DataVariant >, OutputType > |
| Extractor that takes DataVariant and produces any ComputeData type. | |
| template<ComputeData OutputType = std::shared_ptr<Kakshya::SignalSourceContainer>> | |
| using | ContainerExtractor = UniversalExtractor< std::shared_ptr< Kakshya::SignalSourceContainer >, OutputType > |
| Extractor for signal container processing. | |
| template<ComputeData OutputType = Kakshya::Region> | |
| using | RegionExtractor = UniversalExtractor< Kakshya::Region, OutputType > |
| Extractor for region-based extraction. | |
| template<ComputeData OutputType = Kakshya::RegionGroup> | |
| using | RegionGroupExtractor = UniversalExtractor< Kakshya::RegionGroup, OutputType > |
| Extractor for region group processing. | |
| template<ComputeData OutputType = std::vector<Kakshya::RegionSegment>> | |
| using | SegmentExtractor = UniversalExtractor< std::vector< Kakshya::RegionSegment >, OutputType > |
| Extractor for segment processing. | |
| template<ComputeData InputType = std::vector<Kakshya::DataVariant>> | |
| using | MatrixExtractor = UniversalExtractor< InputType, Eigen::MatrixXd > |
| Extractor that produces Eigen matrices. | |
| template<ComputeData InputType = std::vector<Kakshya::DataVariant>> | |
| using | VectorExtractor = UniversalExtractor< InputType, Eigen::VectorXd > |
| Extractor that produces Eigen vectors. | |
| template<ComputeData InputType = std::vector<Kakshya::DataVariant>> | |
| using | NumericExtractor = UniversalExtractor< InputType, std::vector< double > > |
| Extractor that produces numeric vectors. | |
| using | OpererationHookCallback = std::function< void(std::any &)> |
| Callback type for pre/post operation hooks. | |
| using | ReconstructionCallback = std::function< std::any(std::vector< std::vector< double > > &, std::any &)> |
| Callback type for custom reconstruction logic. | |
| using | StandardDataSorter = StandardSorter< std::vector< Kakshya::DataVariant > > |
| Standard sorter for DataVariant. | |
| template<typename T > | |
| using | StandardVectorSorter = StandardSorter< std::vector< std::vector< T > > > |
| Standard sorter for numeric vectors (DataVariant contains these) | |
| using | StandardRegionGroupSorter = StandardSorter< Kakshya::RegionGroup > |
| Standard sorter for region groups (proper way to handle multiple regions) | |
| using | StandardSegmentSorter = StandardSorter< std::vector< Kakshya::RegionSegment > > |
| Standard sorter for region segments. | |
| using | StandardMatrixSorter = StandardSorter< Eigen::MatrixXd > |
| Standard sorter for Eigen matrices. | |
| using | StandardVectorSorterEigen = StandardSorter< Eigen::VectorXd > |
| Standard sorter for Eigen vectors. | |
| template<ComputeData InputType = std::vector<Kakshya::DataVariant>> | |
| using | StandardIndexSorter = StandardSorter< InputType, std::vector< std::vector< size_t > > > |
| Standard sorter that generates indices. | |
| template<ComputeData OutputType = std::vector<Kakshya::DataVariant>> | |
| using | DataSorter = UniversalSorter< std::vector< Kakshya::DataVariant >, OutputType > |
| Sorter that takes DataVariant and produces DataVariant. | |
| template<ComputeData OutputType = std::shared_ptr<Kakshya::SignalSourceContainer>> | |
| using | ContainerSorter = UniversalSorter< std::shared_ptr< Kakshya::SignalSourceContainer >, OutputType > |
| Sorter for signal container processing. | |
| template<ComputeData OutputType = Kakshya::Region> | |
| using | RegionSorter = UniversalSorter< Kakshya::Region, OutputType > |
| Sorter for region-based sorting. | |
| template<ComputeData OutputType = Kakshya::RegionGroup> | |
| using | RegionGroupSorter = UniversalSorter< Kakshya::RegionGroup, OutputType > |
| Sorter for region group processing. | |
| template<ComputeData OutputType = std::vector<Kakshya::RegionSegment>> | |
| using | SegmentSorter = UniversalSorter< std::vector< Kakshya::RegionSegment >, OutputType > |
| Sorter for segment processing. | |
| template<ComputeData InputType = std::vector<Kakshya::DataVariant>> | |
| using | MatrixSorter = UniversalSorter< InputType, Eigen::MatrixXd > |
| Sorter that produces Eigen matrices. | |
| template<ComputeData InputType = std::vector<Kakshya::DataVariant>> | |
| using | VectorSorter = UniversalSorter< InputType, Eigen::VectorXd > |
| Sorter that produces Eigen vectors. | |
| template<typename T , ComputeData OutputType = std::vector<std::vector<T>>> | |
| using | VectorContainerSorter = UniversalSorter< std::vector< std::vector< T > >, OutputType > |
| Sorter for vector containers. | |
| template<ComputeData InputType = std::vector<Kakshya::DataVariant>> | |
| using | IndexSorter = UniversalSorter< InputType, std::vector< std::vector< size_t > > > |
| Sorter for indices generation. | |
Enumerations | |
| enum class | EnergyMethod : uint8_t { RMS , PEAK , SPECTRAL , ZERO_CROSSING , HARMONIC , POWER , DYNAMIC_RANGE } |
| Supported energy computation methods. More... | |
| enum class | EnergyLevel : uint8_t { SILENT , QUIET , MODERATE , LOUD , PEAK } |
| Qualitative classification of energy values. More... | |
| enum class | StatisticalMethod : uint8_t { MEAN , VARIANCE , STD_DEV , SKEWNESS , KURTOSIS , MIN , MAX , MEDIAN , RANGE , PERCENTILE , MODE , MAD , CV , SUM , COUNT , RMS , ENTROPY , ZSCORE } |
| Supported statistical computation methods. More... | |
| enum class | StatisticalLevel : uint8_t { EXTREME_LOW , LOW , NORMAL , HIGH , EXTREME_HIGH , OUTLIER } |
| Qualitative classification of statistical values. More... | |
| enum class | AnalysisType : uint8_t { STATISTICAL , SPECTRAL , TEMPORAL , SPATIAL , FEATURE , PATTERN , TRANSFORM , CUSTOM } |
| Categories of analysis operations for discovery and organization. More... | |
| enum class | AnalysisGranularity : uint8_t { RAW_VALUES , ATTRIBUTED_SEGMENTS , ORGANIZED_GROUPS , SUMMARY_STATISTICS } |
| Output granularity control for analysis results. More... | |
| enum class | ExecutionPolicy : uint8_t { CONSERVATIVE , BALANCED , AGGRESSIVE } |
| Policy for execution strategy selection. More... | |
| enum class | ExtractionMethod : uint8_t { HIGH_ENERGY_DATA , PEAK_DATA , OUTLIER_DATA , HIGH_SPECTRAL_DATA , ABOVE_MEAN_DATA , OVERLAPPING_WINDOWS , ZERO_CROSSING_DATA , SILENCE_DATA , ONSET_DATA } |
| Supported extraction methods for FeatureExtractor. More... | |
| enum class | ExtractionType : uint8_t { DIRECT , REGION_BASED , FEATURE_GUIDED , PATTERN_BASED , TRANSFORM , RECURSIVE , CUSTOM } |
| Categories of extraction operations for discovery and organization. More... | |
| enum class | ExtractionScope : uint8_t { FULL_DATA , TARGETED_REGIONS , FILTERED_CONTENT , SAMPLED_DATA } |
| Scope control for extraction operations. More... | |
| enum class | OperationType : uint8_t { ANALYZER , SORTER , EXTRACTOR , TRANSFORMER , CUSTOM } |
| Operation categories for organization and discovery. More... | |
| enum class | ExecutionMode : uint8_t { SYNC , ASYNC , PARALLEL , CHAINED , DEPENDENCY } |
| Execution paradigms for operations. More... | |
| enum class | ComputationContext : uint8_t { TEMPORAL , SPECTRAL , SPATIAL , SEMANTIC , STRUCTURAL , LOGICAL , PARAMETRIC , REACTIVE , CONCURRENT , RECURSIVE , CONVOLUTION } |
| Defines the computational contexts in which rules can be applied. More... | |
| enum class | SortingAlgorithm : uint8_t { STANDARD , STABLE , PARTIAL , NTH_ELEMENT , HEAP , PARALLEL , RADIX , COUNTING , BUCKET , MERGE_EXTERNAL , QUICK_OPTIMIZED , LAZY_STREAMING , PREDICTIVE_ML , EIGEN_OPTIMIZED , GPU_ACCELERATED } |
| Available sorting algorithms for different use cases. More... | |
| enum class | SortingType : uint8_t { STANDARD , ALGORITHMIC , PATTERN_BASED , TEMPORAL , SPATIAL , PREDICTIVE , CROSS_MODAL , RECURSIVE , CUSTOM } |
| Categories of sorting operations for discovery and organization. More... | |
| enum class | SortingStrategy : uint8_t { IN_PLACE , COPY_SORT , INDEX_ONLY , PARTIAL_SORT , LAZY_SORT , CHUNKED_SORT , PARALLEL_SORT } |
| Sorting execution strategies. More... | |
| enum class | SortingDirection : uint8_t { ASCENDING , DESCENDING , CUSTOM , BIDIRECTIONAL } |
| Basic sort direction for simple comparisons. More... | |
| enum class | SortingGranularity : uint8_t { RAW_DATA , ATTRIBUTED_INDICES , ORGANIZED_GROUPS , DETAILED_ANALYSIS } |
| Output granularity control for sorting results. More... | |
| enum class | ConvolutionOperation : uint8_t { DIRECT_CONVOLUTION , CROSS_CORRELATION , MATCHED_FILTER , DECONVOLUTION , AUTO_CORRELATION } |
| Specific convolution operations supported. More... | |
| enum class | MathematicalOperation : uint8_t { GAIN , OFFSET , POWER , LOGARITHMIC , EXPONENTIAL , TRIGONOMETRIC , QUANTIZE , NORMALIZE , POLYNOMIAL } |
| Specific mathematical operations supported. More... | |
| enum class | SpectralOperation : uint8_t { FREQUENCY_SHIFT , PITCH_SHIFT , SPECTRAL_FILTER , HARMONIC_ENHANCE , SPECTRAL_GATE } |
| Specific spectral operations supported. More... | |
| enum class | TemporalOperation : uint8_t { TIME_REVERSE , TIME_STRETCH , DELAY , FADE_IN_OUT , SLICE , INTERPOLATE } |
| Specific temporal operations supported. More... | |
| enum class | TransformationType : uint8_t { TEMPORAL , SPECTRAL , MATHEMATICAL , CROSS_MODAL , GENERATIVE , SPATIAL , PATTERN_BASED , RECURSIVE , GRANULAR , CONVOLUTION , CUSTOM } |
| Categories of transformation operations for discovery and organization. More... | |
| enum class | TransformationStrategy : uint8_t { IN_PLACE , BUFFERED , STREAMING , INCREMENTAL , LAZY , CHUNKED , PARALLEL , RECURSIVE } |
| Transformation execution strategies. More... | |
| enum class | TransformationQuality : uint8_t { DRAFT , STANDARD , HIGH_QUALITY , REFERENCE , ADAPTIVE } |
| Quality vs performance trade-off control. More... | |
| enum class | TransformationScope : uint8_t { FULL_DATA , TARGETED_REGIONS , SELECTIVE_BANDS , CONDITIONAL } |
| Scope control for transformation operations. More... | |
Functions | |
| std::shared_ptr< OperationRegistry > | get_operation_registry () |
| Global operation registry accessor Similar to how Engine provides global access to core systems. | |
| std::vector< double > | compute_dynamic_range_energy (std::span< const double > data, const size_t num_windows, const uint32_t hop_size, const uint32_t window_size) |
| Compute dynamic range energy using zero-copy processing. | |
| std::vector< double > | compute_zero_crossing_energy (std::span< const double > data, const size_t num_windows, const uint32_t hop_size, const uint32_t window_size) |
| Compute zero-crossing energy using zero-copy processing. | |
| std::vector< double > | compute_power_energy (std::span< const double > data, const size_t num_windows, const uint32_t m_hop_size, const uint32_t m_window_size) |
| Compute power energy using zero-copy processing. | |
| std::vector< double > | compute_peak_energy (std::span< const double > data, const uint32_t num_windows, const uint32_t hop_size, const uint32_t window_size) |
| Compute peak energy using zero-copy processing. | |
| std::vector< double > | compute_rms_energy (std::span< const double > data, const uint32_t num_windows, const uint32_t hop_size, const uint32_t window_size) |
| Compute RMS energy using zero-copy processing. | |
| std::vector< double > | compute_spectral_energy (std::span< const double > data, const size_t num_windows, const uint32_t hop_size, const uint32_t window_size) |
| Compute spectral energy using FFT-based analysis. | |
| std::vector< double > | compute_harmonic_energy (std::span< const double > data, const size_t num_windows, const uint32_t hop_size, const uint32_t window_size) |
| Compute harmonic energy using low-frequency FFT analysis. | |
| std::vector< size_t > | find_zero_crossing_positions (std::span< const double > data, double threshold=0.0) |
| Find actual zero-crossing positions in the signal. | |
| std::vector< size_t > | find_peak_positions (std::span< const double > data, double threshold=0.0, size_t min_distance=1) |
| Find actual peak positions in the signal. | |
| std::vector< size_t > | find_onset_positions (std::span< const double > data, uint32_t window_size, uint32_t hop_size, double threshold=0.1) |
| Find onset positions using spectral flux. | |
| std::vector< double > | compute_mean_statistic (std::span< const double > data, const size_t num_windows, const uint32_t hop_size, const uint32_t window_size) |
| Compute mean statistic using zero-copy processing. | |
| std::vector< double > | compute_variance_statistic (std::span< const double > data, const size_t num_windows, const uint32_t hop_size, const uint32_t window_size, bool sample_variance=true) |
| Compute variance statistic using zero-copy processing. | |
| std::vector< double > | compute_std_dev_statistic (std::span< const double > data, const size_t num_windows, const uint32_t hop_size, const uint32_t window_size, bool sample_variance=true) |
| Compute standard deviation statistic using zero-copy processing. | |
| std::vector< double > | compute_skewness_statistic (std::span< const double > data, const size_t num_windows, const uint32_t hop_size, const uint32_t window_size) |
| Compute skewness statistic using zero-copy processing. | |
| std::vector< double > | compute_kurtosis_statistic (std::span< const double > data, const size_t num_windows, const uint32_t hop_size, const uint32_t window_size) |
| Compute kurtosis statistic using zero-copy processing. | |
| std::vector< double > | compute_median_statistic (std::span< const double > data, const size_t num_windows, const uint32_t hop_size, const uint32_t window_size) |
| Compute median statistic using zero-copy processing. | |
| std::vector< double > | compute_percentile_statistic (std::span< const double > data, const size_t num_windows, const uint32_t hop_size, const uint32_t window_size, double percentile) |
| Compute percentile statistic using zero-copy processing. | |
| std::vector< double > | compute_entropy_statistic (std::span< const double > data, const size_t num_windows, const uint32_t hop_size, const uint32_t window_size, size_t num_bins=0) |
| Compute entropy statistic using zero-copy processing. | |
| std::vector< double > | compute_min_statistic (std::span< const double > data, const size_t num_windows, const uint32_t hop_size, const uint32_t window_size) |
| Compute min statistic using zero-copy processing. | |
| std::vector< double > | compute_max_statistic (std::span< const double > data, const size_t num_windows, const uint32_t hop_size, const uint32_t window_size) |
| Compute max statistic using zero-copy processing. | |
| std::vector< double > | compute_range_statistic (std::span< const double > data, const size_t num_windows, const uint32_t hop_size, const uint32_t window_size) |
| Compute range statistic using zero-copy processing. | |
| std::vector< double > | compute_sum_statistic (std::span< const double > data, const size_t num_windows, const uint32_t hop_size, const uint32_t window_size) |
| Compute sum statistic using zero-copy processing. | |
| std::vector< double > | compute_count_statistic (std::span< const double > data, const size_t num_windows, const uint32_t hop_size, const uint32_t window_size) |
| Compute count statistic using zero-copy processing. | |
| std::vector< double > | compute_mad_statistic (std::span< const double > data, const size_t num_windows, const uint32_t hop_size, const uint32_t window_size) |
| Compute MAD (Median Absolute Deviation) statistic using zero-copy processing. | |
| std::vector< double > | compute_cv_statistic (std::span< const double > data, const size_t num_windows, const uint32_t hop_size, const uint32_t window_size, bool sample_variance=true) |
| Compute CV (Coefficient of Variation) statistic using zero-copy processing. | |
| std::vector< double > | compute_mode_statistic (std::span< const double > data, const size_t num_windows, const uint32_t hop_size, const uint32_t window_size) |
| Compute mode statistic using zero-copy processing. | |
| std::vector< double > | compute_zscore_statistic (std::span< const double > data, const size_t num_windows, const uint32_t hop_size, const uint32_t window_size, bool sample_variance=true) |
| Compute z-score statistic using zero-copy processing. | |
| std::pair< std::vector< Kakshya::DataDimension >, Kakshya::DataModality > | infer_from_data_variant (const Kakshya::DataVariant &data) |
| Infer structure from DataVariant. | |
| std::pair< std::vector< Kakshya::DataDimension >, Kakshya::DataModality > | infer_from_data_variant_vector (const std::vector< Kakshya::DataVariant > &data) |
| Infer structure from vector of DataVariants (NEW) | |
| std::pair< std::vector< Kakshya::DataDimension >, Kakshya::DataModality > | infer_from_container (const std::shared_ptr< Kakshya::SignalSourceContainer > &container) |
| Infer structure from SignalSourceContainer. | |
| std::pair< std::vector< Kakshya::DataDimension >, Kakshya::DataModality > | infer_from_region (const Kakshya::Region ®ion, const std::shared_ptr< Kakshya::SignalSourceContainer > &container=nullptr) |
| Infer structure from Region (placeholder since regions are markers) | |
| std::pair< std::vector< Kakshya::DataDimension >, Kakshya::DataModality > | infer_from_segments (const std::vector< Kakshya::RegionSegment > &segments, const std::shared_ptr< Kakshya::SignalSourceContainer > &container=nullptr) |
| Infer structure from RegionSegments. | |
| std::pair< std::vector< Kakshya::DataDimension >, Kakshya::DataModality > | infer_from_region_group (const Kakshya::RegionGroup &group, const std::shared_ptr< Kakshya::SignalSourceContainer > &container=nullptr) |
| Infer structure from RegionGroup. | |
| template<typename EigenType > | |
| static std::pair< std::vector< Kakshya::DataDimension >, Kakshya::DataModality > | infer_from_eigen (const EigenType &eigen_data) |
| Infer structure from Eigen matrix/vector. | |
| template<typename T > | |
| static std::pair< std::vector< Kakshya::DataDimension >, Kakshya::DataModality > | infer_generic_structure (const T &data) |
| Generic structure inference for unknown types. | |
| template<ComputeData T> | |
| static std::pair< std::vector< Kakshya::DataDimension >, Kakshya::DataModality > | infer_structure (const T &data, const std::shared_ptr< Kakshya::SignalSourceContainer > &container=nullptr) |
| Infer dimensions and modality from any ComputeData type. | |
| std::vector< std::vector< double > > | extract_high_energy_data (const std::vector< std::span< const double > > &data, double energy_threshold=0.1, uint32_t window_size=512, uint32_t hop_size=256) |
| Extract data from high-energy regions using EnergyAnalyzer. | |
| std::vector< std::vector< double > > | extract_peak_data (const std::vector< std::span< const double > > &data, double threshold=0.1, double min_distance=10.0, uint32_t region_size=256) |
| Extract data from peak regions using peak detection. | |
| std::vector< std::vector< double > > | extract_outlier_data (const std::vector< std::span< const double > > &data, double std_dev_threshold=2.0, uint32_t window_size=512, uint32_t hop_size=256) |
| Extract data from statistical outlier regions. | |
| std::vector< std::vector< double > > | extract_high_spectral_data (const std::vector< std::span< const double > > &data, double spectral_threshold=0.1, uint32_t window_size=512, uint32_t hop_size=256) |
| Extract data from regions with high spectral energy. | |
| std::vector< std::vector< double > > | extract_above_mean_data (const std::vector< std::span< const double > > &data, double mean_multiplier=1.5, uint32_t window_size=512, uint32_t hop_size=256) |
| Extract data from regions with values above statistical mean. | |
| std::vector< std::vector< double > > | extract_overlapping_windows (const std::vector< std::span< const double > > &data, uint32_t window_size=512, double overlap=0.5) |
| Extract overlapping windows of actual data. | |
| std::vector< std::vector< double > > | extract_windowed_data_by_indices (const std::vector< std::span< const double > > &data, const std::vector< size_t > &window_indices, uint32_t window_size=512) |
| Extract specific data windows by indices. | |
| std::vector< std::string > | get_available_extraction_methods () |
| Get available extraction methods. | |
| bool | validate_extraction_parameters (uint32_t window_size, uint32_t hop_size, size_t data_size) |
| Validate extraction parameters. | |
| std::vector< std::vector< double > > | extract_zero_crossing_data (const std::vector< std::span< const double > > &data, double threshold=0.0, double min_distance=1.0, uint32_t region_size=1) |
| Extract data at zero crossing points using existing EnergyAnalyzer. | |
| std::vector< std::vector< double > > | extract_silence_data (const std::vector< std::span< const double > > &data, double silence_threshold=0.01, uint32_t min_duration=1024, uint32_t window_size=512, uint32_t hop_size=256) |
| Extract data from silent regions using existing EnergyAnalyzer. | |
| std::vector< std::vector< double > > | extract_onset_data (const std::vector< std::span< const double > > &data, double threshold=0.3, uint32_t region_size=512, uint32_t window_size=1024, uint32_t hop_size=256) |
| Extract data at onset/transient positions using spectral flux. | |
| std::vector< std::vector< double > > | extract_data_from_regions (const std::vector< std::span< const double > > &data, const std::vector< Kakshya::Region > ®ions) |
| Extract actual data from specified regions. | |
| std::vector< std::vector< double > > | extract_data_from_region_group (const std::vector< std::span< const double > > &data, const Kakshya::RegionGroup ®ion_group) |
| Extract data from a RegionGroup. | |
| template<typename OperationType , typename... Args> | |
| std::shared_ptr< OperationType > | create_configured_operation (const std::unordered_map< std::string, std::any > ¶meters, Args &&... args) |
| Creates an operation instance with parameters using safe_any_cast system. | |
| template<typename OperationType > | |
| void | apply_context_parameters (std::shared_ptr< OperationType > operation, const ExecutionContext &ctx) |
| Applies context parameters to an operation. | |
| template<typename Executor , ComputeData DataType> | |
| auto | make_fluent (std::shared_ptr< Executor > executor, DataType &&data) |
| Helper to create FluentExecutor with type deduction. | |
| void | sort_span_inplace (std::span< double > data, SortingDirection direction, SortingAlgorithm algorithm) |
| Sort a single span of doubles in-place. | |
| std::span< double > | sort_span_extract (std::span< const double > data, std::vector< double > &output_storage, SortingDirection direction, SortingAlgorithm algorithm) |
| Sort a single span and return copy in output vector. | |
| void | sort_channels_inplace (std::vector< std::span< double > > &channels, SortingDirection direction, SortingAlgorithm algorithm) |
| Sort multiple channels (spans) in-place. | |
| std::vector< std::span< double > > | sort_channels_extract (const std::vector< std::span< const double > > &channels, std::vector< std::vector< double > > &output_storage, SortingDirection direction, SortingAlgorithm algorithm) |
| Sort multiple channels and return copies. | |
| std::vector< size_t > | generate_span_sort_indices (std::span< double > data, SortingDirection direction) |
| Generate sort indices for a single span. | |
| std::vector< std::vector< size_t > > | generate_channels_sort_indices (const std::vector< std::span< double > > &channels, SortingDirection direction) |
| Generate sort indices for multiple channels. | |
| template<std::random_access_iterator Iterator, typename Comparator > | |
| void | execute_sorting_algorithm (Iterator begin, Iterator end, Comparator comp, SortingAlgorithm algorithm) |
| Execute sorting algorithm on iterator range. | |
| auto | create_double_comparator (SortingDirection direction) |
| Create standard direction-based comparator for doubles. | |
| template<ComplexData T> | |
| auto | create_complex_magnitude_comparator (SortingDirection direction) |
| Create magnitude-based comparator for complex numbers. | |
| template<typename Container , typename Comparator > | |
| std::vector< size_t > | generate_sort_indices (const Container &container, Comparator comp) |
| Generate sort indices for any container with custom comparator. | |
| template<ComputeData T> | |
| void | sort_compute_data_inplace (IO< T > &data, SortingDirection direction, SortingAlgorithm algorithm) |
| Universal sort function - handles extraction/conversion internally. | |
| template<ComputeData T> | |
| T | sort_compute_data_extract (const T &data, SortingDirection direction, SortingAlgorithm algorithm) |
| Universal sort function - returns sorted copy. | |
| template<typename T > | |
| T | sort_compute_data_extract (const IO< T > &data, SortingDirection direction, SortingAlgorithm algorithm) |
| Universal sort function - returns sorted copy. | |
| template<ComputeData T> | |
| T | sort_compute_data (const T &data, SortingDirection direction=SortingDirection::ASCENDING) |
| Convenience function with default algorithm. | |
| template<ComputeData T> | |
| std::vector< std::vector< size_t > > | generate_compute_data_indices (const IO< T > &data, SortingDirection direction) |
| Generate sort indices for any ComputeData type. | |
| template<typename T > | |
| auto | create_multi_key_comparator (const std::vector< SortKey > &keys) |
| Creates a multi-key comparator for complex sorting. | |
| template<typename T > | |
| double | get_temporal_position (const T &item) |
| Helper function to get temporal position from various types Used by TemporalSortable concept. | |
| template<typename T > | |
| SortKey | create_universal_sort_key (const std::string &name, SortingDirection direction=SortingDirection::ASCENDING) |
| Create universal sort key extractor for common data types. | |
| template<typename OperationFunc > | |
| std::vector< double > | fft_convolve_helper (std::span< const double > data_span, std::span< const double > kernel, OperationFunc &&operation, bool return_full_size=true) |
| Common FFT convolution helper to eliminate code duplication. | |
| template<OperationReadyData DataType> | |
| DataType | transform_convolve_with_fir (DataType &input, const std::vector< double > &impulse_response) |
| Direct convolution using existing FIR filter infrastructure (IN-PLACE) This leverages the existing, well-tested filter implementation. | |
| template<OperationReadyData DataType> | |
| DataType | transform_convolve_with_fir (DataType &input, const std::vector< double > &impulse_response, std::vector< std::vector< double > > &working_buffer) |
| Direct convolution using existing FIR filter infrastructure (OUT-OF-PLACE) This leverages the existing, well-tested filter implementation. | |
| template<OperationReadyData DataType> | |
| DataType | transform_convolve (DataType &input, const std::vector< double > &impulse_response) |
| Convolution transformation using existing infrastructure with C++20 ranges (IN-PLACE) | |
| template<OperationReadyData DataType> | |
| DataType | transform_convolve (DataType &input, const std::vector< double > &impulse_response, std::vector< std::vector< double > > &working_buffer) |
| Convolution transformation using existing infrastructure with C++20 ranges (OUT-OF-PLACE) | |
| template<OperationReadyData DataType> | |
| DataType | transform_cross_correlate (DataType &input, const std::vector< double > &template_signal, bool normalize=true) |
| Cross-correlation using FFT (convolution with time-reversed impulse) (IN-PLACE) | |
| template<OperationReadyData DataType> | |
| DataType | transform_cross_correlate (DataType &input, const std::vector< double > &template_signal, bool normalize, std::vector< std::vector< double > > &working_buffer) |
| Cross-correlation using FFT (convolution with time-reversed impulse) (OUT-OF-PLACE) | |
| template<OperationReadyData DataType> | |
| DataType | transform_auto_correlate_fft (DataType &input, bool normalize=true) |
| Auto-correlation using FFT (IN-PLACE) | |
| template<OperationReadyData DataType> | |
| DataType | transform_auto_correlate_fft (DataType &input, std::vector< std::vector< double > > &working_buffer, bool normalize=true) |
| Auto-correlation using FFT (OUT-OF-PLACE) | |
| template<OperationReadyData DataType> | |
| DataType | transform_matched_filter (DataType &input, const std::vector< double > &reference_signal) |
| Matched filter using cross-correlation for signal detection (IN-PLACE) | |
| template<OperationReadyData DataType> | |
| DataType | transform_matched_filter (DataType &input, const std::vector< double > &reference_signal, std::vector< std::vector< double > > &working_buffer) |
| Matched filter using cross-correlation for signal detection (OUT-OF-PLACE) | |
| template<OperationReadyData DataType> | |
| DataType | transform_deconvolve (DataType &input, const std::vector< double > &impulse_to_remove, double regularization=1e-6) |
| Deconvolution using frequency domain division (IN-PLACE) Useful for removing known impulse responses. | |
| template<OperationReadyData DataType> | |
| DataType | transform_deconvolve (DataType &input, const std::vector< double > &impulse_to_remove, double regularization, std::vector< std::vector< double > > &working_buffer) |
| Deconvolution using frequency domain division (OUT-OF-PLACE) Useful for removing known impulse responses. | |
| template<OperationReadyData DataType> | |
| DataType | transform_linear (DataType &input, double a, double b) |
| Linear transformation y = ax + b using C++20 ranges (IN-PLACE) | |
| template<OperationReadyData DataType> | |
| DataType | transform_linear (DataType &input, double a, double b, std::vector< std::vector< double > > &working_buffer) |
| Linear transformation y = ax + b using C++20 ranges (OUT-OF-PLACE) | |
| template<OperationReadyData DataType> | |
| DataType | transform_power (DataType &input, double exponent) |
| Power transformation y = x^exponent (IN-PLACE) | |
| template<OperationReadyData DataType> | |
| DataType | transform_power (DataType &input, double exponent, std::vector< std::vector< double > > &working_buffer) |
| Power transformation y = x^exponent (OUT-OF-PLACE) | |
| template<OperationReadyData DataType> | |
| DataType | transform_polynomial (DataType &input, const std::vector< double > &coefficients) |
| Polynomial transformation using existing Generator::Polynomial (IN-PLACE) | |
| template<OperationReadyData DataType> | |
| DataType | transform_polynomial (DataType &input, const std::vector< double > &coefficients, std::vector< std::vector< double > > &working_buffer) |
| Polynomial transformation using existing Generator::Polynomial (OUT-OF-PLACE) | |
| template<OperationReadyData DataType> | |
| DataType | transform_exponential (DataType &input, double a, double b, double base=std::numbers::e) |
| Exponential transformation y = a * base^(b * x) (IN-PLACE) | |
| template<OperationReadyData DataType> | |
| DataType | transform_exponential (DataType &input, double a, double b, std::vector< std::vector< double > > &working_buffer, double base=std::numbers::e) |
| Exponential transformation y = a * base^(b * x) (OUT-OF-PLACE) | |
| template<OperationReadyData DataType> | |
| DataType | transform_logarithmic (DataType &input, double a, double b, double c=1.0, double base=std::numbers::e) |
| Logarithmic transformation y = a * log_base(b * x + c) (IN-PLACE) | |
| template<OperationReadyData DataType> | |
| DataType | transform_logarithmic (DataType &input, double a, double b, double c, std::vector< std::vector< double > > &working_buffer, double base=std::numbers::e) |
| Logarithmic transformation y = a * log_base(b * x + c) (OUT-OF-PLACE) | |
| template<OperationReadyData DataType, typename TrigFunc > requires std::invocable<TrigFunc, double> | |
| DataType | transform_trigonometric (DataType &input, TrigFunc trig_func, double frequency=1.0, double amplitude=1.0, double phase=0.0) |
| Trigonometric transformation using specified function (IN-PLACE) | |
| template<OperationReadyData DataType, typename TrigFunc > requires std::invocable<TrigFunc, double> | |
| DataType | transform_trigonometric (DataType &input, TrigFunc trig_func, double frequency, double amplitude, double phase, std::vector< std::vector< double > > &working_buffer) |
| Trigonometric transformation using specified function (OUT-OF-PLACE) | |
| template<OperationReadyData DataType> | |
| DataType | transform_quantize (DataType &input, uint8_t bits) |
| Quantization transformation (bit reduction) using C++20 features (IN-PLACE) | |
| template<OperationReadyData DataType> | |
| DataType | transform_quantize (DataType &input, uint8_t bits, std::vector< std::vector< double > > &working_buffer) |
| Quantization transformation (bit reduction) using C++20 features (OUT-OF-PLACE) | |
| template<OperationReadyData DataType> | |
| DataType | transform_clamp (DataType &input, double min_val, double max_val) |
| Clamp transformation using C++20 ranges (IN-PLACE) | |
| template<OperationReadyData DataType> | |
| DataType | transform_clamp (DataType &input, double min_val, double max_val, std::vector< std::vector< double > > &working_buffer) |
| Clamp transformation using C++20 ranges (OUT-OF-PLACE) | |
| template<OperationReadyData DataType> | |
| DataType | transform_wrap (DataType &input, double wrap_range) |
| Wrap transformation (modulo operation) using C++20 ranges (IN-PLACE) | |
| template<OperationReadyData DataType> | |
| DataType | transform_wrap (DataType &input, double wrap_range, std::vector< std::vector< double > > &working_buffer) |
| Wrap transformation (modulo operation) using C++20 ranges (OUT-OF-PLACE) | |
| template<OperationReadyData DataType> | |
| DataType | transform_normalize (DataType &input, const std::pair< double, double > &target_range={ -1.0, 1.0 }) |
| Normalize transformation using existing infrastructure (IN-PLACE) | |
| template<OperationReadyData DataType> | |
| DataType | transform_normalize (DataType &input, const std::pair< double, double > &target_range, std::vector< std::vector< double > > &working_buffer) |
| Normalize transformation using existing infrastructure (OUT-OF-PLACE) | |
| void | interpolate (std::span< double > input, std::vector< double > &output, uint32_t target_size) |
| template<OperationReadyData DataType> | |
| DataType | interpolate_linear (DataType &input, size_t target_size) |
| Linear interpolation between data points using C++20 ranges (IN-PLACE) | |
| template<OperationReadyData DataType> | |
| DataType | interpolate_linear (DataType &input, size_t target_size, std::vector< std::vector< double > > &working_buffer) |
| Linear interpolation between data points using C++20 ranges (OUT-OF-PLACE) | |
| template<OperationReadyData DataType> | |
| DataType | interpolate_cubic (DataType &input, size_t target_size) |
| Cubic interpolation between data points using C++20 ranges (IN-PLACE) | |
| template<OperationReadyData DataType> | |
| DataType | interpolate_cubic (DataType &input, size_t target_size, std::vector< std::vector< double > > &working_buffer) |
| Cubic interpolation between data points using C++20 ranges (OUT-OF-PLACE) | |
| Eigen::MatrixXd | create_rotation_matrix (double angle, uint32_t axis, uint32_t dimensions) |
| Eigen::MatrixXd | create_scaling_matrix (const std::vector< double > &scale_factors) |
| template<OperationReadyData DataType, typename TransformFunc > requires std::invocable<TransformFunc, DataType> | |
| DataType | transform_regions (DataType &input, const std::shared_ptr< Kakshya::SignalSourceContainer > &container, const std::vector< Kakshya::Region > ®ions, TransformFunc transform_func) |
| Region-selective transformation using container-based extraction (IN-PLACE) | |
| template<OperationReadyData DataType, typename TransformFunc > requires std::invocable<TransformFunc, DataType> | |
| DataType | transform_regions (DataType &input, const std::shared_ptr< Kakshya::SignalSourceContainer > &container, const std::vector< Kakshya::Region > ®ions, TransformFunc transform_func, std::vector< std::vector< double > > &working_buffer) |
| Region-selective transformation using container-based extraction (OUT-OF-PLACE) | |
| template<OperationReadyData DataType, typename TransformFunc > requires std::invocable<TransformFunc, double> | |
| DataType | transform_by_energy (DataType &input, double energy_threshold, TransformFunc transform_func, uint32_t window_size=1024, uint32_t hop_size=512) |
| Energy-based transformation using existing EnergyAnalyzer (IN-PLACE) | |
| template<OperationReadyData DataType, typename TransformFunc > requires std::invocable<TransformFunc, double> | |
| DataType | transform_by_energy (DataType &input, double energy_threshold, TransformFunc transform_func, uint32_t window_size, uint32_t hop_size, std::vector< std::vector< double > > &working_buffer) |
| Energy-based transformation using existing EnergyAnalyzer (OUT-OF-PLACE) | |
| template<OperationReadyData DataType, typename TransformFunc > requires std::invocable<TransformFunc, double> | |
| DataType | transform_outliers (DataType &input, double std_dev_threshold, TransformFunc transform_func) |
| Statistical outlier transformation using existing StatisticalAnalyzer (IN-PLACE) | |
| template<OperationReadyData DataType, typename TransformFunc > requires std::invocable<TransformFunc, double> | |
| DataType | transform_outliers (DataType &input, double std_dev_threshold, TransformFunc transform_func, std::vector< std::vector< double > > &working_buffer) |
| Statistical outlier transformation using existing StatisticalAnalyzer (OUT-OF-PLACE) | |
| template<OperationReadyData DataType> | |
| DataType | transform_crossfade_regions (DataType &input, const std::vector< std::pair< Kakshya::Region, Kakshya::Region > > &fade_regions, uint32_t fade_duration) |
| Cross-fade between regions with smooth transitions (IN-PLACE) | |
| template<OperationReadyData DataType> | |
| DataType | transform_crossfade_regions (DataType &input, const std::vector< std::pair< Kakshya::Region, Kakshya::Region > > &fade_regions, uint32_t fade_duration, std::vector< std::vector< double > > &working_buffer) |
| Cross-fade between regions with smooth transitions (OUT-OF-PLACE) | |
| template<OperationReadyData DataType> | |
| DataType | transform_matrix (DataType &input, const Eigen::MatrixXd &transformation_matrix) |
| Matrix transformation using existing infrastructure (IN-PLACE) | |
| template<OperationReadyData DataType> | |
| DataType | transform_matrix (DataType &input, const Eigen::MatrixXd &transformation_matrix, std::vector< std::vector< double > > &working_buffer) |
| Matrix transformation using existing infrastructure (OUT-OF-PLACE) | |
| template<OperationReadyData DataType> | |
| DataType | transform_matrix_multichannel (DataType &input, const Eigen::MatrixXd &transformation_matrix, uint32_t num_channels) |
| Multi-channel matrix transformation with error handling (IN-PLACE) | |
| template<OperationReadyData DataType> | |
| DataType | transform_matrix_multichannel (DataType &input, const Eigen::MatrixXd &transformation_matrix, uint32_t num_channels, std::vector< std::vector< double > > &working_buffer) |
| Multi-channel matrix transformation with error handling (OUT-OF-PLACE) | |
| template<OperationReadyData DataType> | |
| DataType | transform_channel_operation (DataType &input, uint32_t num_channels, bool interleave) |
| Channel operations using C++20 ranges (IN-PLACE) | |
| template<OperationReadyData DataType> | |
| DataType | transform_channel_operation (DataType &input, uint32_t num_channels, bool interleave, std::vector< std::vector< double > > &working_buffer) |
| Channel operations using C++20 ranges (OUT-OF-PLACE) | |
| template<OperationReadyData DataType> | |
| std::vector< Kakshya::Region > | detect_regions_by_energy (const DataType &input, double energy_threshold, uint32_t min_region_size, uint32_t window_size, uint32_t hop_size) |
| Detect regions based on energy threshold using existing EnergyAnalyzer. | |
| uint64_t | smallest_size (std::vector< std::vector< double > > &data) |
| template<typename ProcessorFunc > | |
| std::vector< double > | process_spectral_windows (std::span< double > data, uint32_t window_size, uint32_t hop_size, ProcessorFunc &&processor) |
| Common spectral processing helper to eliminate code duplication. | |
| template<OperationReadyData DataType> | |
| DataType | transform_window (DataType &input, Nodes::Generator::WindowType window_type, uint32_t window_size=0) |
| Windowing transformation using C++20 ranges (IN-PLACE) | |
| template<OperationReadyData DataType> | |
| DataType | transform_window (DataType &input, Nodes::Generator::WindowType window_type, uint32_t window_size, std::vector< std::vector< double > > &working_buffer) |
| Windowing transformation using C++20 ranges (OUT-OF-PLACE) | |
| template<OperationReadyData DataType> | |
| DataType | transform_spectral_filter (DataType &input, double low_freq, double high_freq, double sample_rate=48000.0, uint32_t window_size=1024, uint32_t hop_size=256) |
| Spectral filtering using existing FFT infrastructure with C++20 ranges (IN-PLACE) | |
| template<OperationReadyData DataType> | |
| DataType | transform_spectral_filter (DataType &input, double low_freq, double high_freq, double sample_rate, uint32_t window_size, uint32_t hop_size, std::vector< std::vector< double > > &working_buffer) |
| Spectral filtering using existing FFT infrastructure with C++20 ranges (OUT-OF-PLACE) | |
| template<OperationReadyData DataType> | |
| DataType | transform_pitch_shift (DataType &input, double semitones, uint32_t window_size=1024, uint32_t hop_size=256) |
| Pitch shifting using existing FFT from AnalysisHelper with C++20 ranges (IN-PLACE) | |
| template<OperationReadyData DataType> | |
| DataType | transform_pitch_shift (DataType &input, double semitones, uint32_t window_size, uint32_t hop_size, std::vector< std::vector< double > > &working_buffer) |
| Pitch shifting using existing FFT from AnalysisHelper with C++20 ranges (OUT-OF-PLACE) | |
| template<OperationReadyData DataType> | |
| DataType | transform_spectral_invert (DataType &input, uint32_t window_size=1024, uint32_t hop_size=256) |
| Spectral inversion (phase inversion in frequency domain) using C++20 ranges (IN-PLACE) | |
| template<OperationReadyData DataType> | |
| DataType | transform_spectral_invert (DataType &input, uint32_t window_size, uint32_t hop_size, std::vector< std::vector< double > > &working_buffer) |
| Spectral inversion (phase inversion in frequency domain) using C++20 ranges (OUT-OF-PLACE) | |
| template<typename TransformFunc > requires std::invocable<TransformFunc, std::span<const double>> | |
| std::vector< double > | process_overlap_add (const std::span< const double > &data, uint32_t window_size, uint32_t hop_size, TransformFunc transform_func) |
| Overlap-add processing for windowed transforms using C++20 ranges. | |
| template<OperationReadyData DataType> | |
| DataType | transform_time_reverse (DataType &input) |
| Time reversal transformation using C++20 ranges (IN-PLACE) | |
| template<OperationReadyData DataType> | |
| DataType | transform_time_reverse (DataType &input, std::vector< std::vector< double > > &working_buffer) |
| Time reversal transformation using C++20 ranges (OUT-OF-PLACE) | |
| template<OperationReadyData DataType> | |
| DataType | transform_time_stretch (DataType &input, double stretch_factor) |
| Simple time stretching via resampling using C++20 ranges (IN-PLACE) | |
| template<OperationReadyData DataType> | |
| DataType | transform_time_stretch (DataType &input, double stretch_factor, std::vector< std::vector< double > > &working_buffer) |
| Simple time stretching via resampling using C++20 ranges (OUT-OF-PLACE) | |
| template<OperationReadyData DataType> | |
| DataType | transform_delay (DataType &input, uint32_t delay_samples, double fill_value=0.0) |
| Delay transformation that extends buffer size (IN-PLACE) | |
| template<OperationReadyData DataType> | |
| DataType | transform_delay (DataType &input, uint32_t delay_samples, double fill_value, std::vector< std::vector< double > > &working_buffer) |
| Delay transformation that extends buffer size (OUT-OF-PLACE) - CORRECTED. | |
| template<OperationReadyData DataType> | |
| DataType | transform_fade (DataType &input, double fade_in_duration_ratio=0.0, double fade_out_duration_ratio=0.0) |
| Fade transformation (linear fade-in and fade-out) using C++20 ranges (IN-PLACE) | |
| template<OperationReadyData DataType> | |
| DataType | transform_fade (DataType &input, double fade_in_duration_ratio, double fade_out_duration_ratio, std::vector< std::vector< double > > &working_buffer) |
| Fade transformation (linear fade-in and fade-out) using C++20 ranges (OUT-OF-PLACE) | |
| template<OperationReadyData DataType> | |
| DataType | transform_slice (DataType &input, double start_ratio, double end_ratio) |
| Slice transformation to extract a portion of the data based on ratios (IN-PLACE) | |
| template<OperationReadyData DataType> | |
| DataType | transform_slice (DataType &input, double start_ratio, double end_ratio, std::vector< std::vector< double > > &working_buffer) |
| Slice transformation to extract a portion of the data based on ratios (OUT-OF-PLACE) | |
Variables | |
| template<typename T > | |
| constexpr bool | is_eigen_matrix_v = is_eigen_matrix<T>::value |