MayaFlux 0.1.0
Digital-First Multimedia Processing Framework
Loading...
Searching...
No Matches
MayaFlux::Nodes::Generator::Stochastics::Random Class Reference

Computational stochastic signal generator with multiple probability distributions. More...

#include <Stochastic.hpp>

+ Inheritance diagram for MayaFlux::Nodes::Generator::Stochastics::Random:
+ Collaboration diagram for MayaFlux::Nodes::Generator::Stochastics::Random:

Public Member Functions

 Random (Utils::distribution type=Utils::distribution::UNIFORM)
 Constructor for the stochastic generator.
 
 ~Random () override=default
 Virtual destructor.
 
void set_type (Utils::distribution type)
 Changes the probability distribution type.
 
double process_sample (double input=0.) override
 Generates a single stochastic value.
 
double random_sample (double start, double end)
 Generates a stochastic value within a specified range.
 
std::vector< double > process_batch (unsigned int num_samples) override
 Generates multiple stochastic values at once.
 
std::vector< double > random_array (double start, double end, unsigned int num_samples)
 Generates an array of stochastic values within a specified range.
 
void printGraph () override
 Visualizes the distribution characteristics.
 
void printCurrent () override
 Outputs the current configuration parameters.
 
void set_normal_spread (double spread)
 Sets the variance parameter for normal distribution.
 
void save_state () override
 Saves the node's current state for later restoration Recursively cascades through all connected modulator nodes Protected - only NodeSourceProcessor and NodeBuffer can call.
 
void restore_state () override
 Restores the node's state from the last save Recursively cascades through all connected modulator nodes Protected - only NodeSourceProcessor and NodeBuffer can call.
 
- Public Member Functions inherited from MayaFlux::Nodes::Generator::Generator
virtual ~Generator ()=default
 Virtual destructor for proper cleanup.
 
virtual void set_amplitude (double amplitude)
 Sets the generator's amplitude.
 
virtual double get_amplitude () const
 Gets the current base amplitude.
 
virtual void enable_mock_process (bool mock_process)
 Allows RootNode to process the Generator without using the processed sample.
 
virtual bool should_mock_process () const
 Checks if the generator should mock process.
 
virtual void set_frequency (float frequency)
 Sets the generator's frequency.
 
- Public Member Functions inherited from MayaFlux::Nodes::Node
virtual ~Node ()=default
 Virtual destructor for proper cleanup of derived classes.
 
virtual void on_tick (const NodeHook &callback)
 Registers a callback to be called on each tick.
 
virtual void on_tick_if (const NodeHook &callback, const NodeCondition &condition)
 Registers a conditional callback.
 
virtual bool remove_hook (const NodeHook &callback)
 Removes a previously registered callback.
 
virtual bool remove_conditional_hook (const NodeCondition &callback)
 Removes a previously registered conditional callback.
 
virtual void remove_all_hooks ()
 Removes all registered callbacks.
 
virtual void reset_processed_state ()
 Resets the processed state of the node and any attached input nodes.
 
virtual double get_last_output ()
 Retrieves the most recent output value produced by the node.
 
void register_channel_usage (uint32_t channel_id)
 Mark the specificed channel as a processor/user.
 
void unregister_channel_usage (uint32_t channel_id)
 Removes the specified channel from the usage tracking.
 
bool is_used_by_channel (uint32_t channel_id) const
 Checks if the node is currently used by a specific channel.
 
void request_reset_from_channel (uint32_t channel_id)
 Requests a reset of the processed state from a specific channel.
 
const std::atomic< uint32_t > & get_channel_mask () const
 Retrieves the current bitmask of active channels using this node.
 
NodeContextget_last_context ()
 Retrieves the last created context object.
 
void set_gpu_compatible (bool compatible)
 Sets whether the node is compatible with GPU processing.
 
bool is_gpu_compatible () const
 Checks if the node supports GPU processing.
 
std::span< const float > get_gpu_data_buffer () const
 Provides access to the GPU data buffer.
 

Protected Member Functions

std::unique_ptr< NodeContextcreate_context (double value) override
 Creates a context object for callbacks.
 
void notify_tick (double value) override
 Notifies all registered callbacks about a new value.
 
- Protected Member Functions inherited from MayaFlux::Nodes::Node
virtual void reset_processed_state_internal ()
 Resets the processed state of the node directly.
 

Private Member Functions

double generate_distributed_sample ()
 Generates a raw value according to the current distribution.
 
double transform_sample (double sample, double start, double end) const
 Transforms a raw value to fit within the specified range.
 
void validate_range (double start, double end) const
 Validates that the specified range is mathematically valid.
 

Private Attributes

std::mt19937 m_random_engine
 Mersenne Twister entropy generator.
 
Utils::distribution m_type
 Current probability distribution algorithm.
 
double m_current_start
 Lower bound of the current output range.
 
double m_current_end
 Upper bound of the current output range.
 
double m_normal_spread
 Variance parameter for normal distribution.
 

Additional Inherited Members

- Public Attributes inherited from MayaFlux::Nodes::Node
bool m_fire_events_during_snapshot = false
 Internal flag controlling whether notify_tick fires during state snapshots Default: false (events don't fire during isolated buffer processing) Can be exposed in future if needed via concrete implementation in parent.
 
std::atomic< Utils::NodeStatem_state { Utils::NodeState::INACTIVE }
 Atomic state flag tracking the node's processing status.
 
std::atomic< uint32_t > m_modulator_count { 0 }
 Counter tracking how many other nodes are using this node as a modulator.
 
- Protected Attributes inherited from MayaFlux::Nodes::Generator::Generator
double m_amplitude { 1.0 }
 Base amplitude of the generator.
 
float m_frequency { 440.0F }
 Base frequency of the generator.
 
double m_phase {}
 Current phase of the generator.
 
- Protected Attributes inherited from MayaFlux::Nodes::Node
double m_last_output { 0 }
 The most recent sample value generated by this oscillator.
 
bool m_gpu_compatible {}
 Flag indicating if the node supports GPU processing This flag is set by derived classes to indicate whether the node can be processed on the GPU.
 
std::unique_ptr< NodeContextm_last_context
 The last context object created for callbacks.
 
std::vector< float > m_gpu_data_buffer
 GPU data buffer for context objects.
 
std::vector< NodeHookm_callbacks
 Collection of standard callback functions.
 
std::vector< std::pair< NodeHook, NodeCondition > > m_conditional_callbacks
 Collection of conditional callback functions with their predicates.
 

Detailed Description

Computational stochastic signal generator with multiple probability distributions.

The Random generates algorithmic signals based on mathematical probability distributions, serving as a foundational component for generative composition, procedural sound design, and data-driven audio transformation. Unlike deterministic processes, stochastic generators introduce controlled mathematical randomness into computational signal paths.

Stochastic processes are fundamental in computational audio for:

  • Procedural generation of complex timbral structures
  • Algorithmic composition and generative music systems
  • Data-driven environmental simulations
  • Creating emergent sonic behaviors through probability fields
  • Cross-domain control signal generation (audio influencing visual, haptic, etc.)

This implementation supports multiple probability distributions:

  • Uniform: Equal probability across the entire range
  • Normal (Gaussian): Bell-shaped distribution centered around the midpoint
  • Exponential: Higher probability near the start, decreasing exponentially

The Random can function at any rate - from audio-rate signal generation to control-rate parameter modulation, to event-level algorithmic decision making. It can be integrated with other computational domains (graphics, physics, data) to create cross-domain generative systems.

Definition at line 128 of file Stochastic.hpp.


The documentation for this class was generated from the following files: