MayaFlux 0.1.0
Digital-First Multimedia Processing Framework
Loading...
Searching...
No Matches

◆ compute_statistical_values()

template<ComputeData InputType = std::vector<Kakshya::DataVariant>, ComputeData OutputType = Eigen::VectorXd>
std::vector< double > MayaFlux::Yantra::StatisticalAnalyzer< InputType, OutputType >::compute_statistical_values ( std::span< const double >  data,
StatisticalMethod  method 
) const
inlineprivate

Compute statistical values using span (zero-copy processing)

Definition at line 486 of file StatisticalAnalyzer.hpp.

487 {
488 const size_t num_windows = calculate_num_windows(data.size());
489
490 switch (method) {
492 return compute_mean_statistic(data, num_windows, m_hop_size, m_window_size);
498 return compute_skewness_statistic(data, num_windows, m_hop_size, m_window_size);
500 return compute_kurtosis_statistic(data, num_windows, m_hop_size, m_window_size);
502 return compute_median_statistic(data, num_windows, m_hop_size, m_window_size);
506 return compute_entropy_statistic(data, num_windows, m_hop_size, m_window_size);
508 return compute_min_statistic(data, num_windows, m_hop_size, m_window_size);
510 return compute_max_statistic(data, num_windows, m_hop_size, m_window_size);
512 return compute_range_statistic(data, num_windows, m_hop_size, m_window_size);
514 return compute_sum_statistic(data, num_windows, m_hop_size, m_window_size);
516 return compute_count_statistic(data, num_windows, m_hop_size, m_window_size);
518 return compute_rms_energy(data, num_windows, m_hop_size, m_window_size);
520 return compute_mad_statistic(data, num_windows, m_hop_size, m_window_size);
524 return compute_mode_statistic(data, num_windows, m_hop_size, m_window_size);
527 default:
528 return compute_mean_statistic(data, num_windows, m_hop_size, m_window_size);
529 }
530 }
size_t calculate_num_windows(size_t data_size) const
Calculate number of windows for given data size.
std::vector< double > compute_zscore_statistic(std::span< const double > data, const size_t num_windows, const uint32_t hop_size, const uint32_t window_size, bool sample_variance)
Compute z-score statistic using zero-copy processing.
std::vector< double > compute_entropy_statistic(std::span< const double > data, const size_t num_windows, const uint32_t hop_size, const uint32_t window_size, size_t num_bins)
Compute entropy statistic using zero-copy processing.
std::vector< double > compute_skewness_statistic(std::span< const double > data, const size_t num_windows, const uint32_t hop_size, const uint32_t window_size)
Compute skewness statistic using zero-copy processing.
std::vector< double > compute_variance_statistic(std::span< const double > data, const size_t num_windows, const uint32_t hop_size, const uint32_t window_size, bool sample_variance)
Compute variance statistic using zero-copy processing.
std::vector< double > compute_mad_statistic(std::span< const double > data, const size_t num_windows, const uint32_t hop_size, const uint32_t window_size)
Compute MAD (Median Absolute Deviation) statistic using zero-copy processing.
std::vector< double > compute_std_dev_statistic(std::span< const double > data, const size_t num_windows, const uint32_t hop_size, const uint32_t window_size, bool sample_variance)
Compute standard deviation statistic using zero-copy processing.
std::vector< double > compute_sum_statistic(std::span< const double > data, const size_t num_windows, const uint32_t hop_size, const uint32_t window_size)
Compute sum statistic using zero-copy processing.
std::vector< double > compute_percentile_statistic(std::span< const double > data, const size_t num_windows, const uint32_t hop_size, const uint32_t window_size, double percentile)
Compute percentile statistic using zero-copy processing.
std::vector< double > compute_mode_statistic(std::span< const double > data, const size_t num_windows, const uint32_t hop_size, const uint32_t window_size)
Compute mode statistic using zero-copy processing.
std::vector< double > compute_rms_energy(std::span< const double > data, const uint32_t num_windows, const uint32_t hop_size, const uint32_t window_size)
Compute RMS energy using zero-copy processing.
std::vector< double > compute_min_statistic(std::span< const double > data, const size_t num_windows, const uint32_t hop_size, const uint32_t window_size)
Compute min statistic using zero-copy processing.
std::vector< double > compute_mean_statistic(std::span< const double > data, const size_t num_windows, const uint32_t hop_size, const uint32_t window_size)
Compute mean statistic using zero-copy processing.
std::vector< double > compute_range_statistic(std::span< const double > data, const size_t num_windows, const uint32_t hop_size, const uint32_t window_size)
Compute range statistic using zero-copy processing.
std::vector< double > compute_cv_statistic(std::span< const double > data, const size_t num_windows, const uint32_t hop_size, const uint32_t window_size, bool sample_variance)
Compute CV (Coefficient of Variation) statistic using zero-copy processing.
@ PERCENTILE
Arbitrary percentile (requires parameter)
@ KURTOSIS
Fourth moment - tail heaviness.
@ ZSCORE
Z-score normalization.
@ ENTROPY
Shannon entropy for discrete data.
@ MAD
Median Absolute Deviation.
@ CV
Coefficient of Variation (std_dev/mean)
@ VARIANCE
Population or sample variance.
@ SKEWNESS
Third moment - asymmetry measure.
std::vector< double > compute_median_statistic(std::span< const double > data, const size_t num_windows, const uint32_t hop_size, const uint32_t window_size)
Compute median statistic using zero-copy processing.
std::vector< double > compute_kurtosis_statistic(std::span< const double > data, const size_t num_windows, const uint32_t hop_size, const uint32_t window_size)
Compute kurtosis statistic using zero-copy processing.
std::vector< double > compute_max_statistic(std::span< const double > data, const size_t num_windows, const uint32_t hop_size, const uint32_t window_size)
Compute max statistic using zero-copy processing.
std::vector< double > compute_count_statistic(std::span< const double > data, const size_t num_windows, const uint32_t hop_size, const uint32_t window_size)
Compute count statistic using zero-copy processing.

References MayaFlux::Yantra::compute_count_statistic(), MayaFlux::Yantra::compute_cv_statistic(), MayaFlux::Yantra::compute_entropy_statistic(), MayaFlux::Yantra::compute_kurtosis_statistic(), MayaFlux::Yantra::compute_mad_statistic(), MayaFlux::Yantra::compute_max_statistic(), MayaFlux::Yantra::compute_mean_statistic(), MayaFlux::Yantra::compute_median_statistic(), MayaFlux::Yantra::compute_min_statistic(), MayaFlux::Yantra::compute_mode_statistic(), MayaFlux::Yantra::compute_percentile_statistic(), MayaFlux::Yantra::compute_range_statistic(), MayaFlux::Yantra::compute_rms_energy(), MayaFlux::Yantra::compute_skewness_statistic(), MayaFlux::Yantra::compute_std_dev_statistic(), MayaFlux::Yantra::compute_sum_statistic(), MayaFlux::Yantra::compute_variance_statistic(), and MayaFlux::Yantra::compute_zscore_statistic().

+ Here is the call graph for this function: